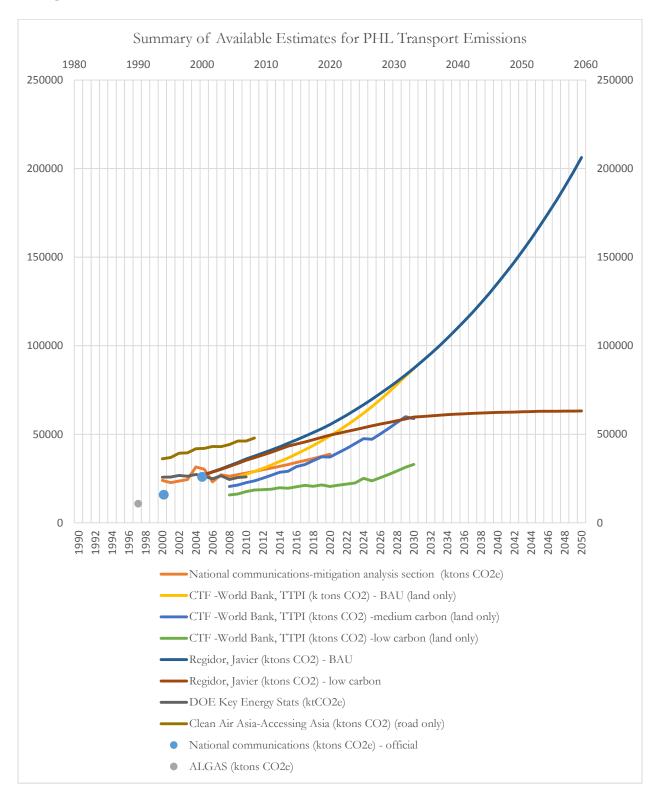


Summary of Studies: Philippines Transportation Sector Emissions

Author: Alvin Mejia



www.transportandclimatechange.org

Introduction

This document contains information on the existing studies and references that have estimated historical and projected emissions from the Philippine transportation sector. The tables included in this document contain concise explanations about the aspects that have been reviewed, such as the methodological approach for emissions quantification, the tools used and the description of the major assumptions that were used in the study, as well as the links to the references.

It intends to give a snapshot of the relevant studies that have been implemented in relation to transport emissions (with a particular focus on CO2). This document is based on studies that have been made available to the team during the time of the review and mainly looks into studies that have provided estimates of the emissions from the transportation sector in the country.

The table below shows the available estimates from the reports that were reviewed as part of the development of this document.¹

¹ Regidor and Javier (2014) have estimates for each 5-year interval between 2005-2050, yearly values were interpolated.

Study	Asia Least	Cost Gree	nhouse Ga	s Abater	nent St	rategy :	Philippines			
Year published	1998					0,	**			
Main Author/s	Multiple aut	hors consis	sting of nati	onal tech	inical ex	perts and	international	experts		
Funders							ited Nations			
	Developme	nt Program								
Link	Not availab	le on-line								
Objectives of the study	The study's	main objec	tive is to co	ome up w	ith a str	ategy con	taining least-c	ost		
,							ergy, forestry			
	use and agri			C	·					
Scope of emission covered	CO2, CH4,	N2O, CO,	NOx, NM	VOCs						
Time horizon	1990-2020									
Emission estimation approach	The base ye	ar emission	ıs (1990) we	ere calcula	ated usir	ng the IPO	CC guidelines	(reference		
	and sectoral	approache	s were used	l). The pr	ojection	s took in	to account tra	nsport		
							tion-based app			
Tools used	MARKAL was used in the analysis of the interventions. MARKAL is a multiperiod,									
	linear programming model of an integrated energy system which uses a bottom up									
	approach to	determine	the optima	l, least-co	ost confi	guration	of the energy	system.		
Baseline Scenario	Baseline scenario: uses the 1996-2025 projected energy profiles from the PEP									
	Update as inputs to the MARKAL Model + actual data from 1990 to 1995.									
	1990 Emiss		nates (Gig	agrams)	for Tra					
		CO2		N2O	NOx	CO	NMVOC	CO2e		
	Road	9,292	1.46	0.38	62.09	493.2	93.06	9,440		
	Marine	895	0.08	0.02	21.25	2.1	0.61	924		
	Aviation	453	0.02	0.02	1.81	4.8	0.20	461		
	Total	10,640	1.56	0.42	85.15	500.1	93.87	10,804		
	The published projected values up to 2020 were lumped for the energy sector and									
	no sectoral values were given in the report.									
	Energy Sector Emissions Estimates (Gigagrams CO2):									
	Energy Sec									
		1990	2000	2005		010	2020			
	PEP	43,472	121,156	157,4	87 2	18,894	429,963			
	1996									
	ALGAS	40,296	67,136		12	26,940	238,260			
Mitigation Scenario	For transpo	rt, "high ef	ficiency trai	nsport" (i	introduc	ing high	efficiency cars	, trucks		
	and UVs are introduced starting year 2000) was included in the demand side									
	abatement scenarios.									
	This scenario involves the introduction of more efficient transport system									
	to include									
	• hig	gh efficienc	y private ga	soline car	rs, (from	n 0.305 to	o 0.603 vehic	e km		
	tra	veled (vkm	t/MJ) ² ;							
	• hig	gh efficienc	y diesel true	cks, from	0.111 to	o 0.136 vl	kmt/MJ; and			
			-				o 0.72 vkmt/1	MJ		
	1	,		-,	-,			5		
	Energy cons	sumption re	educed by 5	55.4 PJ in	n the 30	-year peri	iod. CO2 emis	sions		
							ranslates to 1.			
							2 avoided is -2			
		1)(0-7							

² Vehicle-km per petajoule. The statement basically states that the assumption is that the efficiency of the transport vehicles in the "high efficiency" scenario is double that of the baseline.

Study	A Strategic	Approach to	Climate Cl	nange in th	e Philippir	ies			
Year published	2010								
Main Author/s	Transport ar	Transport and Traffic Planners (TTPI) Inc. in association with CPI Energy Phils. Inc.							
Funders	World Bank								
Link		esources.wo		JINTEAI	PREGTOP	ENVIRO	<u>NMENT/</u>		
	Resources/I	PHCCSNJan2	7final.pdf						
Objectives of the study		jective of the							
		over the imme							
		ectors. It evalu			entions using	g a common			
	0	y based on cos	st-effectiven	ess.					
Scope of emission covered	CO2e								
Time horizon	2008 to 2030								
Emission estimation approach		on utilized the							
		d sectoral app							
		pproach (top-							
		cally, imported							
		, which is base							
	1	rs, was later ap	oplied to asso	ess the impa	acts of GHC	emissions :	mitigation		
	options.								
Tools used	Excel based	spreadsheet c	algulations t	oole were d	avaloped by	the team			
Baseline Scenario		Scenario for					ased on the		
Dasenne Scenario					1				
	actual transport energy data from 2000 to 2007, and the projected energy profile from 2008 to 2030 based on the 2008-2030 Philippine Energy Plan (PEP 2008). The targets								
		P 2008 were a							
		lation was set			iucis 70). 11	ie annuar me	icase in		
	, entere pope			i venieres.					
	The study co	mbined the I	PCC sectora	l approach	and the AL	GAS values f	for vehicle		
		ies and averag							
	were adjuste	d using recent	t transport st	udies durin	g the time o	f the study.3			
	,	C			-				
	The baseline	(million tons	CO2e) are §	given below	:				
	Million ton	sCO2 (Baseli	ine Scenario)		1			
		2008	2010	2015	2020	2025	2030		
	Baseline	24.39	27.4	36.66	49.05	65.63	87.1		
Mitigation Scenario	Multiple stra	tegies were m	odeled by th	e team, taki	ing interven	tions also fro	om the		
		ly as well as ta							
	types and set	rvices in the tr	ransport GH	G emission	is. The impa	cts of the pr	oposed		
	strategies are	e given below.	The study e	valuated tw	o alternative	e scenarios –	medium		
	and low carb	on scenario.	The medium	scenario as	sumes that	the Philippir	ne Energy		
		rgets on alterr							
	Program for	Public Transp	port and the	auto-gas ta	rgets) and sp	pecific measu	ures under		
	the National	Energy Effic	iency and Co	onservation	Program. S	pecific vehic	le efficiency		
		ch as the roll-o							
		le inspection s				ems (both B	RT and		
		considered to							
	1.00	000 B 1		.	`				
	Million tons	sCO2 Reduc 2010	tion (Mediu 2015	1 m Scenari 2020		25	2030		
	1.1	1 2010	1 2010	2020	- I ZU	(.)	(1) 11 /		

³ JICA Survey of Inter-regional Passenger and Freight Flows (2005), JICA CALA Road Study (2006), AusAID Managing Truck Overloading Study (2008), among others.

Biof	fuels (0.83	3.11	6.61	12.13	20.59
Veh	icle 2	2.77	1.83	2.45	3.28	4.37
Effi	ciency					
Den	nand (6.17	2.63	2.79	2.99	3.26
man	agement					

The Low-Carbon Scenario assumes a more intensive application of the identified key strategies of biofuels, vehicle efficiency improvements, and transport demand reduction. In particular, this scenario calls for accelerated nationwide implementation of 20% mix for biodiesel (by 2020) and attaining 85% bioethanol blend in 2025. Likewise, the fuel efficiency improvements and BRT lines should be pursued beyond Metro Manila and its neighboring regions. This intensive scenario is expected to bring down GHG emissions by as much as 62% from baseline estimate or a maximum potential reduction of 54 MtCO2e.

Million tonsCO2 Reduction (Low Carbon Scenario)

	2010	2015	2020	2025	2030
Biofuels	0.83	6.86	16.66	28.02	37.48
Vehicle	2.77	3.70	4.95	6.62	8.82
Efficiency					
Demand	6.17	6.54	6.86	7.27	7.82
management					

The breakdown of the interventions are given below:

Mitigation Potential and Cost-Effectiveness of Low Carbon Interventions

	Annual (Average)	USD/tCO2e (co-	USD/tCO2e ⁴
	CO2 mitigation	benefits not	(co-benefits
	potential	included)	included)
	(MtCO2e)		
Biofuels	15.8	30.8	-9.8
Road	2.3	172.6	-2.1
maintenance			
MVIS (Motor	2.3	7.7	-5
vehicle inspection			
system)			
Light vehicle	0.3	103.4	0
technologies			
4-stroke tricycles	0.2	154.8	0
Congestion	1.2	3.7	-0.2
pricing			
Public transport	1.3	3.3	-19.8
improvement			
BRT systems (100	4.2	5.1	-29.7
km)			
LRT/MRT (46	0.2	766.7	-33.8
km)			

⁴ Health benefits were valuated by assigning a static USD value per ton of (100 USD) per ton of gasoline fuel reduced. Source: World

Bank, Environmental Cost of Fossil Fuels: A Rapid Assessment Method with Application to Six Cities,

for Transportat h Foundation, It idy aims at form r capita level (roon calculations of per capita transformer the "2 degree" second o 2050 culations used a ctivity paramete ing process. The and vehicle type ng (qualitative a sting tools (quar- s of the interver	e.org/porta or, Ms. She tion Studies nstitution f nulating a le oad, rail, w. done by the asport CO2 scenario. ⁵	al/lpadownl eila Javier of s for Transpor ong-term ac ater, air) by e Internation 2 emissions up approach ivity estimat nelude emiss cars, rail frei	oad f the Universit tr Policy Studi tion plan for t 2050. This 0.3 hal Energy Ag that would be using passeng es are exogene- ions estimates ight, air- passe	ty of the Ph ies, Clean A transport to 33 tons per gency (IEA) e needed in ger-km and ous factors s (and reducenger).	ton-km as the in the emissions ction potential) by
ose Regin Regid for Transportat recommendation, In ady aims at former er capita level (recommendations commendations commendations commendations) of per capita transfer the "2 degree" so o 2050 culations used a ctivity parameter ing process. The and vehicle type ing (qualitative a sting tools (quar- so of the interventation)	or, Ms. Sha tion Studies nstitution f nulating a le oad, rail, w. lone by the nsport CO2 scenario. ⁵ a bottom-u rs. The act ne results in (e.g. road of unalysis for ntitative ex	eila Javier of s for Transpor ong-term ac ater, air) by e Internation 2 emissions p approach ivity estimat nelude emiss cars, rail frei recommend	the Universit ton plan for t 2050. This 0.3 nal Energy Ag that would be using passeng es are exogene ions estimates ight, air- passe	ies, Clean A transport to 33 tons per gency (IEA) e needed in ger-km and ous factors s (and reducenger). ate mitigatio	Air Asia D achieve a 0.33 capita target was to reflect equal order to stay ton-km as the in the emissions ction potential) by on actions) and missions impact
ose Regin Regid for Transportat recommendation, In ady aims at former er capita level (recommendations commendations commendations commendations) of per capita transfer the "2 degree" so o 2050 culations used a ctivity parameter ing process. The and vehicle type ing (qualitative a sting tools (quar- so of the interventation)	or, Ms. Sha tion Studies nstitution f nulating a le oad, rail, w. lone by the nsport CO2 scenario. ⁵ a bottom-u rs. The act ne results in (e.g. road of unalysis for ntitative ex	eila Javier of s for Transpor ong-term ac ater, air) by e Internation 2 emissions p approach ivity estimat nelude emiss cars, rail frei recommend	the Universit ton plan for t 2050. This 0.3 nal Energy Ag that would be using passeng es are exogene ions estimates ight, air- passe	ies, Clean A transport to 33 tons per gency (IEA) e needed in ger-km and ous factors s (and reducenger). ate mitigatio	Air Asia D achieve a 0.33 capita target was to reflect equal order to stay ton-km as the in the emissions ction potential) by on actions) and missions impact
n Foundation, In ady aims at form or capita level (re- on calculations of of per capita tran- the "2 degree" s o 2050 culations used a ctivity paramete ing process. The and vehicle type ng (qualitative a sting tools (quar- s of the interver	nstitution f nulating a le oad, rail, we lone by the asport CO2 scenario. ⁵ a bottom-u rs. The act ne results in (e.g. road of nulysis for ntitative ex	for Transpor ong-term ac ater, air) by e Internation 2 emissions papproach ivity estimat nclude emiss cars, rail frei	tion plan for t 2050. This 0.3 nal Energy Ag that would be using passeng es are exogene ions estimates ight, air- passe	transport to 33 tons per gency (IEA) e needed in ger-km and ous factors s (and reducenger).	ton-km as the in the emissions ction potential) by
er capita level (ro on calculations co of per capita tran the "2 degree" s <u>o 2050</u> culations used a ctivity paramete ing process. The and vehicle type ng (qualitative a sting tools (quar s of the interver	oad, rail, w. done by the asport CO2 scenario. ⁵ a bottom-u rs. The act ne results in (e.g. road malysis for ntitative ex	ater, air) by e Internation 2 emissions up approach ivity estimat nelude emiss cars, rail frei recommend	2050. This 0.3 nal Energy Ag that would be using passeng es are exogene ions estimates ight, air- passe	33 tons per gency (IEA) e needed in ger-km and ous factors s (and reducenger). ate mitigatio	capita target was to reflect equal order to stay ton-km as the in the emissions ction potential) by on actions) and missions impact
culations used a ctivity paramete ing process. Th and vehicle type ng (qualitative a sting tools (quar s of the interver	rs. The act ne results in (e.g. road malysis for ntitative ex	ivity estimat nclude emiss cars, rail frei recommend	es are exogen ions estimates ight, air- passe ling appropria	ous factors s (and reducenger). ate mitigatio	in the emissions ction potential) by on actions) and missions impact
culations used a ctivity paramete ing process. Th and vehicle type ng (qualitative a sting tools (quar s of the interver	rs. The act ne results in (e.g. road malysis for ntitative ex	ivity estimat nclude emiss cars, rail frei recommend	es are exogen ions estimates ight, air- passe ling appropria	ous factors s (and reducenger). ate mitigatio	in the emissions ction potential) by on actions) and missions impact
ctivity paramete ing process. Th and vehicle type ng (qualitative a sting tools (quar s of the interven	rs. The act ne results in (e.g. road malysis for ntitative ex	ivity estimat nclude emiss cars, rail free recommend	es are exogen ions estimates ight, air- passe ling appropria	ous factors s (and reducenger). ate mitigatio	in the emissions ction potential) by on actions) and missions impact
sting tools (quan s of the interver	ntitative ex				missions impact
lippines.	iuons appli				countries including
pulation, GDP-l ptions. The population 50). ⁶ The GDP nstitute (2012). ⁷ re used as a bas erent types of v aship between the ions are then tra- ng into account ger travel activit 6 and freight tra- en 2005 and 205 n tons CO2 (Bi 2005	based projeulation pro Prospects growth rat The GDP is for estim rehicles (tal he motoriz anslated int local data of ty (passengeunsport (tor 50). usiness-as 2010	ections for v jections wer (annual ave zes are based per capita v nating the m king into con ation indexe to passenger on vehicle-k er-km) is esti s-usual scer 2020	ehicle owners re based on the rage growth ra- on a study by were computer otorization in- nsideration the s and GDP pe- c-kilometer and ilometers and cimated to grow mated to grow nario) 2030	ship, and state medium state of 1.35% ate of 1.35% y the Asian d based on dexes (vehi e historical per capita gr d ton-kilon l average oc ow at an ann w at 4.7% p	atic VKM/vehicle scenario of the % between 2005 Development these numbers icle/1000 people) trends in the cowth). The vehicle neter travel activity ccupancies and nual average rate
23.80	31.97	50.78	81.77	128.46	197.24
	pulation, GDP- bitions. The pop orld Population 50). ⁶ The GDP institute (2012). ⁷ re used as a bas ferent types of w aship between the ions are then tra- ing into account of vehicles. ger travel activité and freight tra- en 2005 and 205 1 tons CO2 (B) 27.25 23.80 tailed of the bas	pulation, GDP-based projections. The population prospects50).6 The GDP growth rate50).6 The GDP growth rate50).7 The GDF50).6 The GDP growth rate50).7 The GDF50).7 The GDF50).8 The GDF50).8 The GDF50).9 The GDF5	pulation, GDP-based projections for v bottoms. The population projections were forld Population Prospects (annual avector). ⁶ The GDP growth rates are based institute (2012). ⁷ The GDP per capital v re used as a basis for estimating the m ferent types of vehicles (taking into con- tranship between the motorization indexe- tions are then translated into passenger- ing into account local data on vehicle-k types and freight transport (ton-km) is esti- ten 2005 and 2050). 1 tons CO2 (Business-as-usual scer 2005 2010 2020 27.25 36.11 55.47 23.80 31.97 50.78 tailed of the baseline scenario modelin	pulation, GDP-based projections for vehicle owners but ons. The population projections were based on the orld Population Prospects (annual average growth r 50). ⁶ The GDP growth rates are based on a study by institute (2012). ⁷ The GDP per capita were compute re used as a basis for estimating the motorization in erent types of vehicles (taking into consideration the aship between the motorization indexes and GDP priors are then translated into passenger-kilometer and into account local data on vehicle-kilometers and of vehicles. ger travel activity (passenger-km) is estimated to grow and freight transport (ton-km) is estimated to grow and freight transport (ton-km) is estimated to grow and freight transport (ton-km) is estimated to grow and freight transport (ton-km) is estimated to grow and freight transport (ton-km) is estimated to grow and freight transport (ton-km) is estimated to g	ger travel activity (passenger-km) is estimated to grow at an and 6 and freight transport (ton-km) is estimated to grow at 4.7% p en 2005 and 2050). 1 tons CO2 (Business-as-usual scenario) 2005 2010 2020 2030 2040 27.25 36.11 55.47 87.31 135.32

⁵ The degree scenario describes an energy system consistent with an emissions traiectory that recent climate science research indicates would give an 80% chance of limiting average global temperature increase to 2°C. (see http://www.iea.org/publications/scenariosandprojections/) 6 http://esa.un.org/wpp/

⁷ Asian Development Bank Institute. (2012). ASEAN 2030, Towards a Borderless Economic Community.

	passenger	air, freight a	air, etc)							
Mitigation Scenario	impacts o	The low-carbon scenario consisted of modeling assumptions that relate to the potential impacts of the following measures (road transport): Pricing regimes, ICT, BRT, rail, CNGV buses, Hybrid buses, electric vehicles, biofuels, eco driving.								
	inputs from that was constructed where an in- would fit taken into penetration the 0.33 ta	m the work onducted a mage of the this image v account. T n levels of rget was acl ed of the	sshop (as well s part of the p e future society were selected. The authors had the policies (w hieved.	as separate o project. The j y was envisio Current plan d to do itera vithin reason)	the applied tin consultations of process involv- ned and polici s and priorities tions in order) in order to si leling can be	done by the le ed a "visionin es and interve s of the count to adjust the imulate a scen	ead author) g" process ntions that try are also timing and ario where			
	Million to	ns CO2 (L	low Carbon so	cenario)						
		2005	2010	2020	2030	2040	2050			
	Total	27.25	35.34	49.56	59.73	62.33	63.15			
	Road	23.80	31.20	44.88	54.06	54.78	52.69			
		s no cost-c as included.	1	ring the time	e of the study	y, but a mod	ule on co-			

Study	Philippines' Secon	d Nationa	l Comm	unication	is to the	UNFCO	C		
Year published	2015								
Link	http://unfccc.int/re	source/do	cs/natc/	phlnc2.pd	<u>f</u>				
Main Author/s	Philippine Governm			• •					
Funders/ Supporting	Support from GEF								
organizations									
Objectives of the study	The National comm	unications	to the U	NFCCC c	ontains th	ne invent	ory of the		
	country's GHG emissions (in this case, the base year is 2000).								
Scope of emission covered	The calculation of the								
Time horizon	2000 (official submis								
Emission estimation approach	The IPCC sectoral a								
	consumption estimates from the Department of Energy's energy balance sheets). The transportation emissions are estimated for the sub-sectors (e.g. navigation,								
	aviation, road, rail), but disaggregation of the road transport emissions by vehicle is not part of the process.								
Tools used	The official IPCC tools and spreadsheets were used in the inventory.								
Tools used									
	The mitigation analysis used the Long-range Energy Alternatives Planning (LEAP) Tool.								
Baseline Scenario	The overall transpor	t emission	s in 2000	are:					
	The overall dumpor			ure.					
	Kilotons (CO2e) in	the Year	2000						
		CO2		-14	N2O		Total		
	Transport 2	5,792.03	3.4	15	0.23		25,935.78		
		5,772.05	5.	15	0.25				
	In comparison, the 1994 inventory ktCO2e emissions for transport were at 15,888,8 growing at an annual average of 8.5%.								
	In 2000, the road transport sub-sector contributed 79% of the total CO2e emissions of the whole transport sector, followed by national navigation (17%) and domestic aviation (4%).								
	East the mitigation analysis DOE values were used up to the user $2009 + 207$								
	For the mitigation analysis, DOE values were used up to the year 2008. A 3%								
	annual average increase in energy consumption (sector wide) was used in projecting future consumption up to 2020.								
	projecting future con	loumption	up to 2 0	_0.					
	Gigagrams CO2e I	Estimates	and Pro	jections ⁹					
		2000	2005	2010	2015	2020			
	Domestic aviation	1,000	700	600	600	800			
	Road	20,400	26,000	25,400	29,800	35,100			
	Rail		1,200						
	National		-,_00				-		
	Naviation	2,800	2,400	2,100	2,500	2,900			
	Total	24,200	30,300	28,100	32,900	38,800			
		· -·,	. ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						

^{8 15,800} ktons CO2, 2.15 ktons CH4, 0.14 ktons N2O.

⁹ Yearly values are available in the final SNC document. This table was taken from the mitigation analysis section. As you may notice, the total emissions for the year 2000 do not match the figures in the previous table.

Study			Key En	ergy Stat	tistics 201	10					
Year publishe	d		2011								
Link			http://v	vww.doe.	gov.ph/p	olicy-plan	ning/key	-energy-st	atistics-20	010/1140	-energy-
			and-env	ironment							
Main Author/	's		Departn	nent of E	nergy						
Funders/ Sup	porting										
organizations											
Objectives of											
Scope of emis		red			120 expre	essed in C	O2 equiv	alents.			
Time horizon				2010 (yea							
Emission estin	mation app	proach						nption da			
							different	data that 1	they gathe	er from da	ata
					il compan	ies).					
Tools used				rmation a							
Baseline Scena	ario		The values given can be considered more of historical estimates based on the								
			DOE energy consumption estimates. There are no further disaggregation (e.g. by								
			sub-sector, by vehicles) given in the on-line data. The estimated annual CO2e								
			(million tons) for the transport sector are given below.								
	_										
Million tCO2	2e										
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Transport	25.74	25.89	26.77	26.33	27.35	26.36	24.9	26.55	24.5	25.6	25.93
				<u> </u>	<u> </u>						
Mitigation sce	enario		The refe	erence do	es not inc	lude a mit	tigation so	cenario.			

Study	APEC Energy Demand and Supply Outlook -5th Edition
Year published	2013
Link	http://aperc.ieej.or.jp/publications/reports/outlook/5th/volume2/
	EDSO5_V2_Philippines.pdf
Main Author/s	Asia Pacific Energy Research Center
Funders/ Supporting	
organizations	
Objectives of the study	The key objectives of the APEC Energy Demand and Supply Outlook are to help
	facilitate APEC
	cooperation by providing policymakers with;
	• a useful reference work on energy in the APEC region,
	• a statistically-supported review of the challenges and opportunities facing the
	APEC economies
	individually and as a region,
	• a source of ideas and approaches for dealing with these energy challenges and
	capitalizing on energy opportunities.
Scope of emission covered	CO2
Time horizon	2010-2035
Emission estimation approach	See explanation in the tools section
Tools used	The study uses the APERC Energy Demand and Supply Model. The model has
	separate sectoral modules for 1) Industrial and non-energy demand; 2)
	Residential/commercial/agricultural demand; 3) transportation demand model. These sectoral modules estimate the future energy demand in the said sectors (not
	activity). The energy demand projections are mainly influenced by the input factors
	such as socio-economic indicators, fuel production, biofuel contents and market
	efficiencies. The report on the model framework is not so clear how the vehicle
	projections that are quoted in the country reports are used in the projection of the
	energy demand for the sectors.
Baseline Scenario	Based on the historical data and key assumptions on the relevant socio-economic
	parameters, the study estimates that the final energy demand is expected to expand
	at an average annual rate of 2.9% from 2010 to 2035. This translates to a total
	final energy demand of 49 Mtoe by 2035, from 23.8 Mtoe in 2010.
	The transport sector (including international transport) is expected to account for
	42% share of the final energy demand and 67% of the oil requirement by 2035.
	The sector's total demand will expand to 19 Mtoe by 2035 from the 2010 level of
	8.4 Mtoe.
	The study estimates that the light vehicle fleet is expected to increase at an annual
	rate of 3.4% during the analysis period. It estimates that the fleet will be 40%
	gasoline-fed, 19% diesel fed and 6% other-fuel-fed (LPG, hybrids) by 2035. The remaining 35% of the light vehicle fleet are motorcycles.
	remaining 5570 of the light vehicle freet are motorcycles.
	The study estimates that CO2 emissions will be growing at 4.5% per annum, from
	75.9 million tons in 2010 to 230.2 million in 2035. ¹⁰ The specific numbers for
	transportation are not given in the publicly-available report, only the charts are
	available.
Mitigation Scenario	The study estimates the impacts of going for 3 sets of alternative scenarios as
0	discussed :
	a) High gas scenario – assumes that natural gas will reach 62.7 Mtoe in 2035
	(10 times higher than the BAU). The implication on the transport sector
Sudon occulato	discussed :a) High gas scenario – assumes that natural gas will reach 62.7 Mtoe in 2035

¹⁰ Economy-wide (sectors include the following: electricity generation, other transformation, industry, domestic transport, international transport, other)

r	
	is that a higher share of gas-fed vehicles and usage of gas in the transport sector will be realized. However, the impacts analyzed were mainly on the electricity sector.
1 \	
b)	Alternative urban development scenario – Urban development scenarios were simulated (high sprawl, ¹¹ fixed urban land ¹²) which impacted the assumptions on vehicle ownership. The CO2 emissions from light duty vehicles would be 16% higher in the High Sprawl scenario compared to BAU in 2035. The light vehicle CO2 emissions in the fixed urban land scenario is 24% lower than the BAU.
c)	Virtual clean car race – This scenario embodies a high penetration of electric, hybrid, natural gas and hydrogen vehicles (e.g. conventional vehicles in the fleet will be reduced from 98.4% in the BAU to 48% in the alternative scenarios – i.e. hyper car transition, electric vehicle transition, hydrogen vehicle transition, natural gas vehicle transition. The simulations point to the "hyper car transition" scenario as the one with the biggest reduction potential in terms of $CO2 - 26\%$ compared to BAU in 2035. The Natural Gas scenario reduced the emissions by 6% compared to BAU. The electric vehicle transition showed no difference compared to BAU in 2035 (perhaps due to the prevalence of coal). The hydrogen vehicle scenario resulted in higher CO2 emissions in 2035 compared to BAU (13%).
1	

¹¹ Vehicle ownership in this high sprawl scenario is 8% higher than the BAU in 2035.

¹² Vehicle ownership in the fixed urban land scenario is 13% lower than BAU in 2035.

Year published Link Main Author/s Funders/ Supporting organiz Objectives of the study Scope of emission covered Time horizon Emission estimation approac Tools used Baseline Scenario		201 htt Cle Fu Th fro Th cou Fo 200 A h tran into dat act (ve sou Ex Th ava	12 p://clean ean Air A nded by e study in m the tra e study a untries (tr r transport 00-2010 pottom u nsport se ensity- fa a and we ivity (vel- hicle- kn urced fro cel-basec e study c	nairinitia sia World B ntended ansport a lso estim ransport ort, CO2, p approa ector (bas ector of e ere re-cat nicle-km) n/l) and m existir d calculat	ank to provid and electr and electr PM, NC PM, NC ach was u sing main emissions egorized were so emission ag local e ion sheet	portal/pi le guidan icity sect ntry-spec tricity) us 0x were e ly on the). Vehicle to confo urced for factors (vidences ts were d	ce on est ors withi cific histo ing the s estimated estimating e ASIF ap e populat rm with m existir kg emiss	imating (n the con- prical emi- pecified : g the emi- pproach - tions wer the regio ng studies ions/veh	(bottom- ntext of t issions for – activity re sourceo onal guida s. Energy nicle-km)	up) emiss the Asian or 13 Asia logy. om the re- structure d from o ance. Veh y intensity values w	sions region. an oad e- fficial hicle			
Main Author/s Funders/ Supporting organiz Objectives of the study Scope of emission covered Time horizon Emission estimation approac		Cle Function Function Formation Form	e study in m the tra e study a m the tra e study a <u>untries (tr</u> r transpo 00-2010 0000000000	usia World B ntended ansport a lso estim ransport ort, CO2, ap approa ector (bas ector of e ere re-cat nicle-km) n/l) and m existir d calculat	ank to provid and electr and electr PM, NC PM, NC ach was u sing main emissions egorized were so emission ag local e ion sheet	le guidan icity sect ntry-spec tricity) us Dx were e used for e ly on the). Vehicle to confo arced fro factors (vidences ts were d	ce on est ors withi cific histo ing the s estimated estimating e ASIF ap e populat rm with m existir kg emiss	imating (n the con- prical emi- pecified : g the emi- pproach - tions wer the regio ng studies ions/veh	(bottom- ntext of t issions fo methodo issions fr – activity re source onal guida s. Energy icle-km)	up) emiss the Asian or 13 Asia logy. om the re- structure d from o ance. Veh y intensity values w	sions region. an oad e- fficial hicle			
Funders/ Supporting organiz Objectives of the study Scope of emission covered Time horizon Emission estimation approac		Function of the second	nded by e study in m the tra e study a <u>antries (tr</u> r transpo 00-2010 bottom u nsport se ensity- fa a and we ivity (vel- hicle- kn <u>arced fro</u> <u>cel-basec</u> e study c	World B ntended ansport a lso estim ransport ort, CO2, ap approa ector (bas ector of e ere re-cat hicle-km) n/l) and m existin d calculat covers est	to provid and electr aated cou and elect PM, NC ach was u sing main emissions egorized were sou emission ag local e ion sheet	icity sect ntry-spec tricity) us 0x were e used for e ly on the). Vehicle to confo arced fro factors (vidences ts were d	ors withi cific histo ing the s stimated estimating e ASIF ap e populat rm with m existir kg emiss	n the con prical emi pecified : g the emi pproach - tions wer the regio ng studies ions/veh	ntext of t issions for methodo issions fr – activity re sourceo onal guida s. Energy nicle-km)	om the Asian or 13 Asia logy. om the ro- structure d from o nice. Vel- r intensity values w	region. an oad e- fficial nicle			
Objectives of the study Scope of emission covered Time horizon Emission estimation approac		Th fro Th cou Fo: 200 A b tran intt dat act (ve sou Exx Th ava (kn	e study in m the tra e study a <u>antries (t</u> r transpo <u>00-2010</u> oottom u nsport se ensity- fa a and we ivity (vel- hicle- kn <u>arced fro</u> <u>cel-basec</u> e study c	ntended ansport a lso estim ransport ort, CO2, p approa ector (bas ector of e ere re-cat hicle-km) n/l) and m existir d calculat	to provid and electr aated cou and elect PM, NC ach was u sing main emissions egorized were sou emission ag local e ion sheet	icity sect ntry-spec tricity) us 0x were e used for e ly on the). Vehicle to confo arced fro factors (vidences ts were d	ors withi cific histo ing the s stimated estimating e ASIF ap e populat rm with m existir kg emiss	n the con prical emi pecified : g the emi pproach - tions wer the regio ng studies ions/veh	ntext of t issions for methodo issions fr – activity re sourceo onal guida s. Energy nicle-km)	om the Asian or 13 Asia logy. om the ro- structure d from o nice. Vel- r intensity values w	region. an oad e- fficial nicle			
Scope of emission covered Time horizon Emission estimation approac Tools used		fro Th COU Fo: 200 A I tran into dat act (ve sou Exx Th ava (kn	m the tra e study a <u>untries (tr</u> <u>r transpo</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2010</u> <u>00-2000</u> <u>00-2000</u> <u>00-2000</u>	ansport a lso estim ransport ort, CO2, p approa ector (bas ector of e ere re-cat nicle-km) n/l) and m existir d calculat	nd electri and electri PM, NC nch was u sing main missions egorized were sou emission ng local e ion sheet	icity sect ntry-spec tricity) us 0x were e used for e ly on the). Vehicle to confo arced fro factors (vidences ts were d	ors withi cific histo ing the s stimated estimating e ASIF ap e populat rm with m existir kg emiss	n the con prical emi pecified : g the emi pproach - tions wer the regio ng studies ions/veh	ntext of t issions for methodo issions fr – activity re sourceo onal guida s. Energy nicle-km)	om the Asian or 13 Asia logy. om the ro- structure d from o nice. Vel- r intensity values w	region. an oad e- fficial nicle			
Time horizon Emission estimation approac Tools used	ch	Fo: 200 A l tran into dat act (ve sou Ex: Th ava (kn	r transpo 00-2010 oottom u nsport se ensity- fa a and we ivity (veh hicle- kn urced fro cel-basec e study c iilable est	prt, CO2, p approa ector (bas ector of e ere re-cat nicle-km) n/l) and m existir d calculat covers est	PM, NC ach was u sing main missions egorized were sou emission ng local e ion sheet	Dx were end ased for end ly on the). Vehicle to confor arced fro factors (vidences.	estimated estimating e ASIF ap e populat rm with m existir kg emiss	g the emi oproach - cions wer the regio ng studies ions/veh	issions fr – activity re source nal guida s. Energy iicle-km)	om the re- -structure d from o ance. Veh r intensity values w	e- fficial nicle			
Emission estimation approac	ch	A h trai intt dat act (ve sou Exx Th ava (kn	pottom u nsport se ensity- fa a and we ivity (vel- hicle- kn urced fro cel-basec e study c hilable est	ector (bas actor of e ere re-cat nicle-km) n/l) and <u>m existin</u> d calculat	sing main missions egorized were sou emission ng local e ion sheet	ly on the). Vehicle to confo arced fro factors (vidences.	e ASIF ap e populat rm with m existir kg emiss	proach - ions wer the regio ng studies ions/veh	– activity e sourceonal guida s. Energy iicle-km)	-structure d from o ince. Veh intensity values w	e- fficial nicle			
Tools used	ch	trai inte dat act (ve sou Ex Th ava (kn	nsport se ensity- fa and we ivity (veh hicle- kn <u>arced fro</u> cel-basec e study c hilable est	ector (bas actor of e ere re-cat nicle-km) n/l) and <u>m existin</u> d calculat	sing main missions egorized were sou emission ng local e ion sheet	ly on the). Vehicle to confo arced fro factors (vidences. ts were d	e ASIF ap e populat rm with m existir kg emiss	proach - ions wer the regio ng studies ions/veh	– activity e sourceonal guida s. Energy iicle-km)	-structure d from o ince. Veh intensity values w	e- fficial nicle			
		Ex Th ava (kn	cel-basec e study c ulable est	d calculat	ion sheet	ts were d		for the o	calculatio	ne				
		Th ava (kn	e study c uilable est	overs est			Excel-based calculation sheets were developed for the calculations. The study covers estimates based on historical data (vehicle numbers) and							
		Th	oe).	f fuel) pe	vehicle-k	m per ye type and	ar per ve emission	hicle type	e, fuel efl (kgCO2,	ficiencies				
2	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010			
CO2 (million tons) 36	6.17	36.93	39.36	39.55	41.87	42.07	43.09	43.00	44.24	46.22	47.93			
PM (thousand tons) 27	7.46	27.57	29.72	29.85	31.30	31.90	32.62	32.61	33.60	35.36	36.82			
	73.0	173.5 0	183.2 8	183.4 1	193.4 4	195.5 8	201.4 0	201.4 5	210.1 8	221.3 1	229.8 9			
The % distribution of the CC	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010			
2W – motorcycles	0%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%			
3W – tricycles	5%	5%	5%	5%	6%	7%	8%	8%	9%	9%	10%			
PC – passenger cars	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%			
MUV – multi-utility vehicles	25%	25%	26%	26%	26%	26%	25%	25%	24%	23%	23%			
BUS	3%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%			
	28%	28%	28%	29%	28%	28%	27%	27%	26%	25%	25%			
HCV – heavy trucks	35%	34%	33%	32%	32%	31%	33%	32%	33%	34%	33%			