The ASEAN – German Technical Cooperation Programme "Cities, Environment and Transport"

Transport and Climate Change

Move forward fuel efficiency policy in Vietnam

Alex Körner alex_koerner@gmx.de

March 29

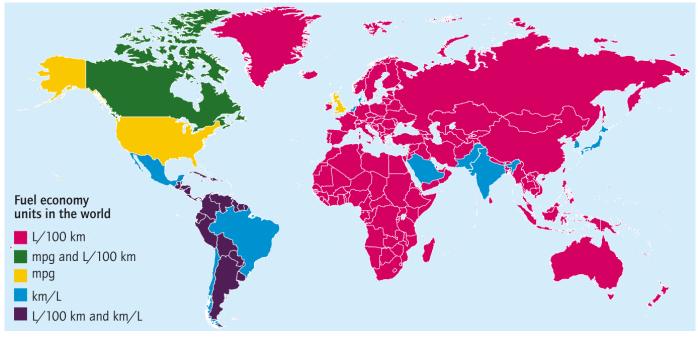
Hanoi

Implemented by

7 Indata Instant

Content

- Introduction: Some definitions
- Why fuel economy policy?
- Policy measures and (some!) case studies
- Fuel economy policies conclusions
- Short introduction to Fuel Economy Policy Impact assessment Tool (FEPIT)



Fuel economy & fuel efficiency – Definitions

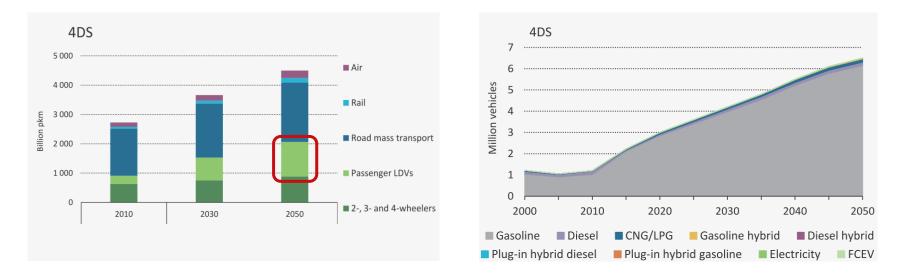
Definitions: Fuel efficiency – fuel economy – fuel consumption

- Fuel economy: km/l
- Fuel consumption: I/100km
- Fuel efficiency: MJ/pkm or MJ/tkm

Source: IEA Technology Roadmap: Fuel Economy of Road Vehicles

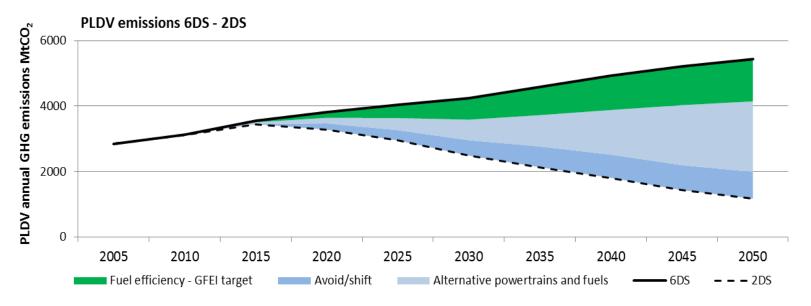
Fuel consumption, CO₂ emissions and pollutants

- Pollutant emissions include: CO, NH₃, NO_x, VOC, PM10, SO_x
- Fuel consumption/CO₂ emissions and pollutant emissions are two different things – a big car can have low pollutant emission (through use of catalytic converters) but high fuel consumption and CO₂ emission
- Fuel consumption (L/100km) and CO₂ emission (gCO₂/km) are interchangeable, the carbon intensity (gCO₂/L) of the fuel is the respective conversion factor



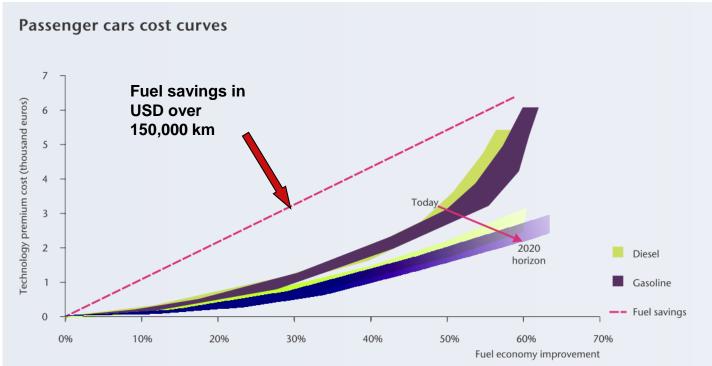
Fuel economy policies – Motivation

Passenger travel and PLDV sales in the ASEAN region up to 2050


- Passenger car travel is projected to quadruple until 2050 in the ASEAN region (IEA ETP 2012 4DS)
- Sales of passenger cars are projected to increase by 500% in a business as usual scenario between 2010 and 2050

Source: IEA Energy Technology Perspectives 2012

Car fuel efficiency is a "low-hanging fruit" for GHG mitigation

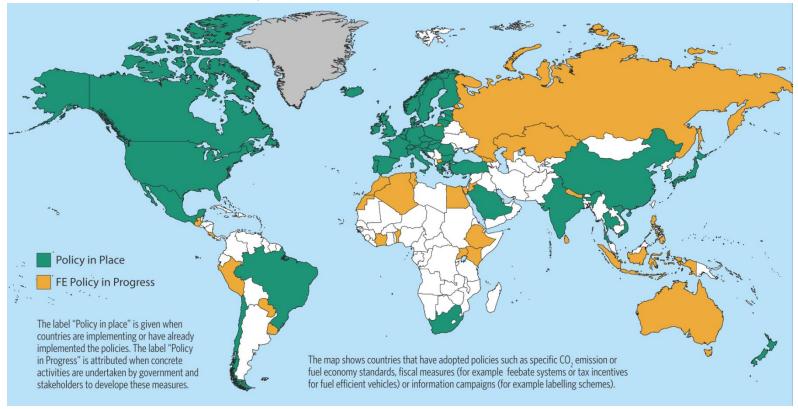

- Transport accounts for 23% of energy related carbon emissions
- Reducing fuel consumption (L/100km) by 50% until 2050 can save up to 33 Gt CO2 and up to USD 8 trillion globally

Source: GFEI State of the World 2016

Fuel efficiency pays back

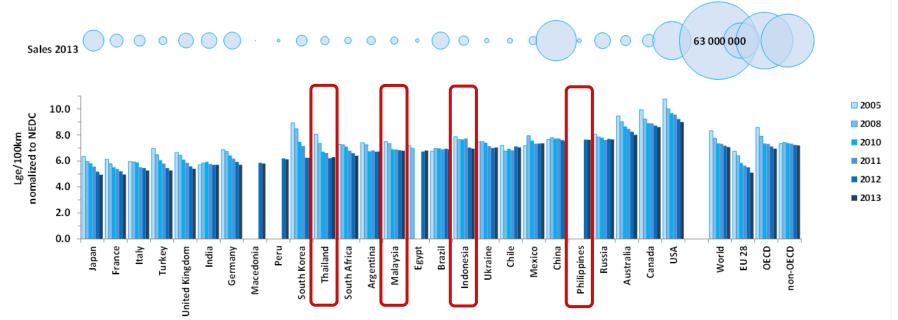
- 30% fuel consumption reduction pays back after 3.5 years (44,000km, USD 1.1/L, 8L/100km base FE, no discounting, today's technology cost)
- 50% fuel consumption reduction pays back after 6 years (75,000km, USD 1.1/L, 8L/100km base FE, no discounting)

Source: IEA Technology Roadmap: Fuel Economy of Road Vehicles



Fuel consumption of new cars – Status quo

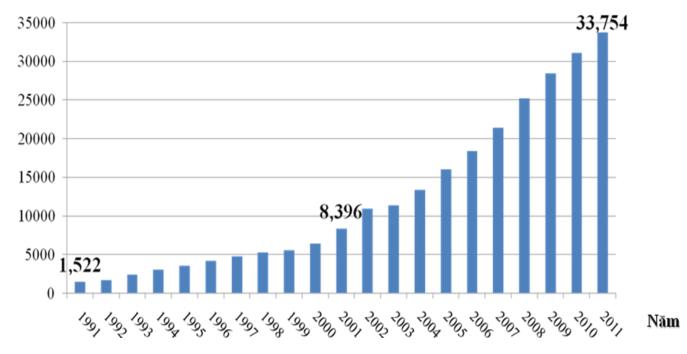
Fuel economy policies around the world


- More than 80% of the global PLDV market is regulated
- Vietnam, Thailand have fuel economy policies in place, Philippines, Malaysia, Indonesia are on the way to develop FE policies

Source: GFEI State of the World 2016

New PLDV fuel consumption in selected ASEAN countries – GFEI/IEA FE report

- Countries with FE policies in place show encouraging efficiency improvement rates
- Size shift vs. technology evolution moderates non-OECD improvement
- Fuel consumption (L/100km) of new sold LDVs shows a wide spectrum in ASEAN


Source: GFEI working paper 11 - International Comparison of Light-Duty Vehicle Fuel Economy 2012-2013 Update

Vietnam: Two-wheeler fleet exploded in the last 20 years

Số lượng xe (x1,000)

• In 2011 almost 34 million two wheelers were on the road in Vietnam

Vietnam: Can two-wheelers get more efficient?

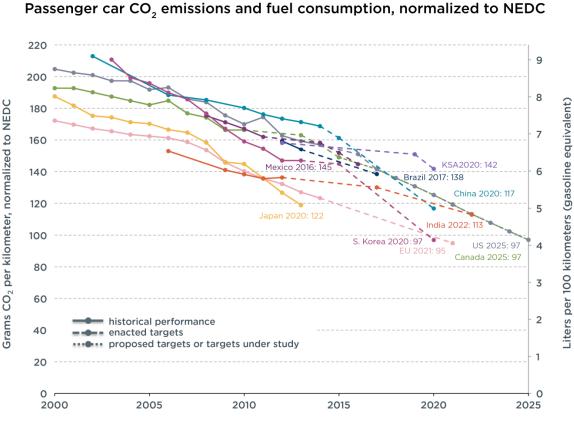
Table 1 – Number of motorcycles locally manufactured and assembled and imported

		impon					_
Year Quantity	2005	2010	2011	2012	2013	2014	
Manufactured and assembled (units)	2,187,870	3,141,698	3,671,441	3.282.220	3.268.228	2.916.689	
Imported (units)	45,716	92,516	66,839	36.528	19.037	20.713	リ

Source: Vietnam Register

- Less than 1% of all newly registered two wheelers are imported
- Based on data from 5 biggest manufacturers, the state of the art of twowheeler fuel economy can be determined → 2.6 L/100km (preliminary result)
 Source: Vietnam Register

Policy measures and case studies


Fuel economy policies & instruments

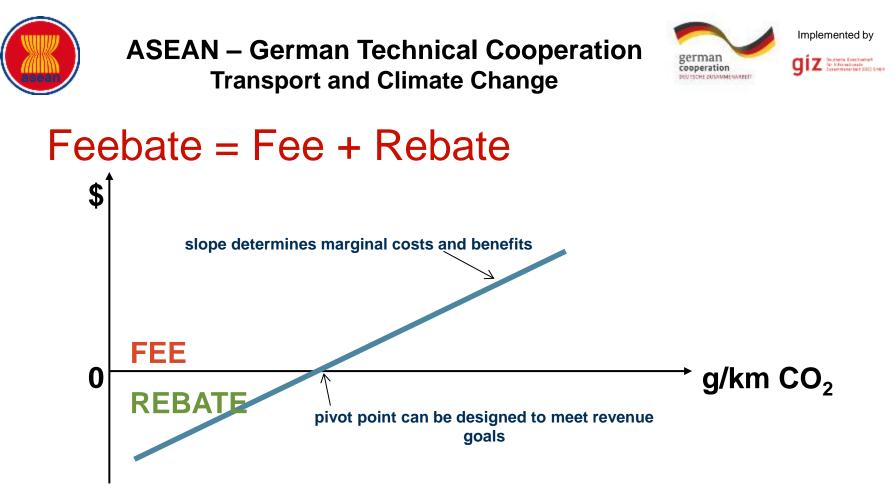
- Regulatory Fuel economy/CO₂ emission standards
- 2. Monetary Fiscal instruments and road pricing
- 3. Consumer information

Fuel economy/CO₂ emission standards

Regulation of **corporate average** fuel economy/CO₂ emission **of new cars** based on sales weighted average (EU) or harmonic mean (US)

Inclusion of super-credits for alternative fuel vehicles – e.g. multiplier on BEVs sales

Standards are an efficient measure for countries with own car manufacturing and/or a big LDV market


Source: ICCT 2016

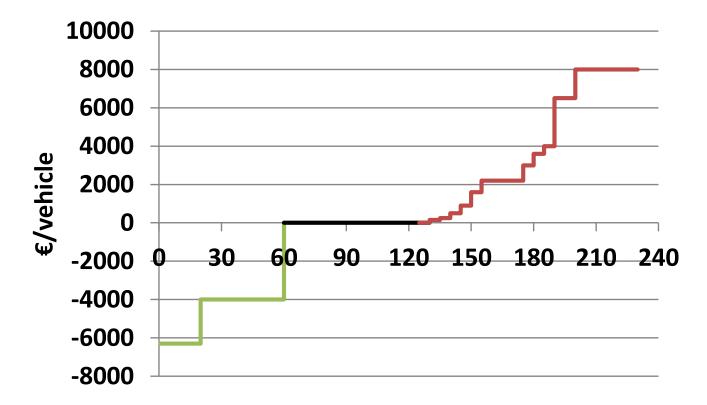
Monetary measures

Fiscal policy type	Characteristics
Vehicle purchase tax/feebates	Paid at time of purchase; can be differentiated by fuel economy or CO ₂
Vehicle circulation tax	Typically paid at annual registration; can be CO ₂ -adjusted
Fuel tax	Set by fuel type; paid upon refueling
Other monetary measures	
Road pricing	Paid by km of driving or when passing a cordon line

- Market-based policy that shifts consumer purchases (and potentially manufacturer production) to lower emission vehicles by placing a fee on higher-emitting vehicles and providing a rebate to lower-emitting vehicles
- Based on fuel economy or CO₂ differential between vehicles
- Could also take into account vehicle attributes like size or weight

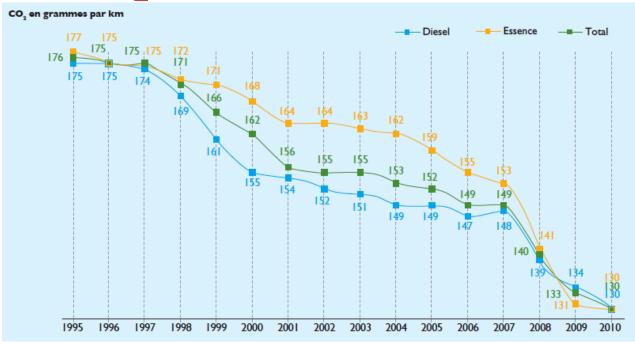
Case study: Singapore

CEVS BANDINGS						
Band	Carbon emission (CO ₂ g/km)	REB/ (FROM 1 J		SURCHARGE (FROM 1 JULY 2013)		
		Cars	Taxis	Cars	Taxis	
A1	0 to 100	\$20,000	\$30,000			
A2	101 to 120	\$15,000	\$22,500			
A3	121 to 140	\$10,000	\$15,000			
A4	141 to 160	\$5,000	\$7,500			
В	161 to 210	\$0	\$0	\$0	\$0	
C1	211 to 230			\$5,000	\$7,500	
C2	231 to 250			\$10,000	\$15,000	
C3	251 to 270			\$15,000	\$22,500	
C4	271 & above			\$20,000	\$30,000	


• Singapore introduced feebate scheme in January 2013

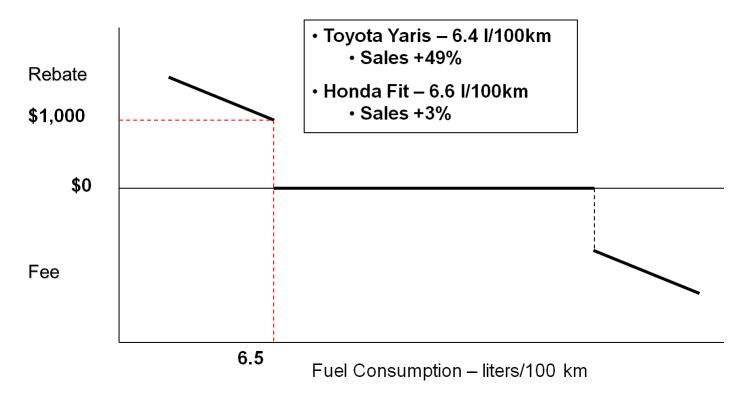
Source: http://www.lta.gov.sg/apps/news/page.aspx?c=2&id=12e099d1-e037-450b-80e3-5cb6b8293c4a#1

Case study: France

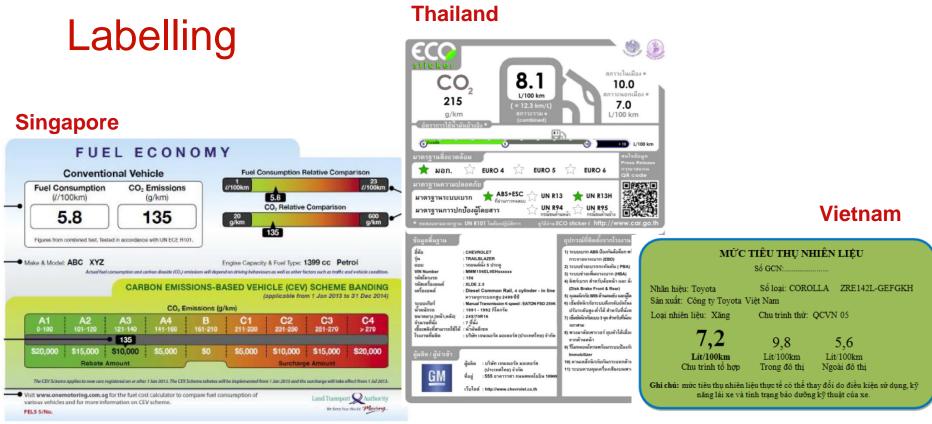


• Fees have risen and the rebates declined over time in order to achieve cost neutrality

French feebate system led to significant drop in CO_2 emissions



- 2001–2007 avg. reduction new vehicle $CO_2 = 1$ g/km per year
- 2008: emissions drop 9 g/km and 2009 by 7 g/km, Ministry of Transport attributes to introduction of bonus/malus system
- Cost 2008: 225 Million EUR not cost neutral! → Changed 2010/2011 Source: Les véhicules particuliers en France (Ademe), March 2011


Important to have a continuous slope, no steps – example: Canada

 Ill-defined step function for feebate scheme distorted car market in Canada

- Data is a prerequisite for emission/fuel economy based policy measures
- Information should be shown to consumers to guide their purchase decision
- FE labelling is compulsory in many countries/regions: Brazil, Canada, Chile, China, EU, Japan, Korea, New Zealand, Singapore, Thailand, United States, Vietnam

Fuel economy label: US

 Additional information on annual fuel cost and savings/additional costs compared to the average vehicle explains the impact of fuel economy very clearly to the consumer

Fuel economy policies – Conclusions

Policy design – defining appropriate targets – designing appropriate measures

Preliminary findings from new IEA/GFEI study "Technology and policy drivers of the fuel economy of new light duty vehicles" (soon to be published):

- Regulatory targets and monetary incentives have a major influence on the development of vehicle fuel efficiency
- The adoption of combined regulatory and fiscal measures appears to be the best path to achieve energy savings from light duty vehicles
- Fuel economy standards tend to guarantee effective results in big markets
- Differentiated vehicle taxation demonstrated to be effective especially in markets with lower purchasing power
- Differentiated vehicle taxation easier to set up than fuel economy regulations

Fuel Economy Policy Impact assessment Tool FEPIT

Technical steps to introduce FE policies and the use of FEPIT

- <u>Baseline</u> What is the average fuel economy of new passenger vehicles sold today in your country?
- Target Where will fuel economy need to be in the future?
- <u>Identification of policies</u> Which measures are appropriate to reach the target?
- <u>Quantification of policy measures</u> regulatory and monetary measures and information campaigns

Purpose of FEPIT

- Simple tool to <u>estimate the impact of selected policy measures</u> on the average fuel economy of newly registered cars in a given year in the future
- **Support for decision makers** to implement policy schemes to achieve region specific fuel economy targets in the light of the GFEI target
- <u>Light application</u> running in MS EXCEL with limited data requirements and with a simple and user-friendly interface
- Does not replace in-depth policy study: <u>magnitude of the impact of the</u> policy measures rather than exact forecast

Policy measures analysed in FEPIT

- Fuel economy regulation/standard
- CO₂-Based Vehicle registration tax/feebate scheme
- CO₂-Based Vehicle circulation tax
- Fuel taxation

Eco-labelling not explicitly considered: it is assumed to be a prerequisite for the application for all other policies

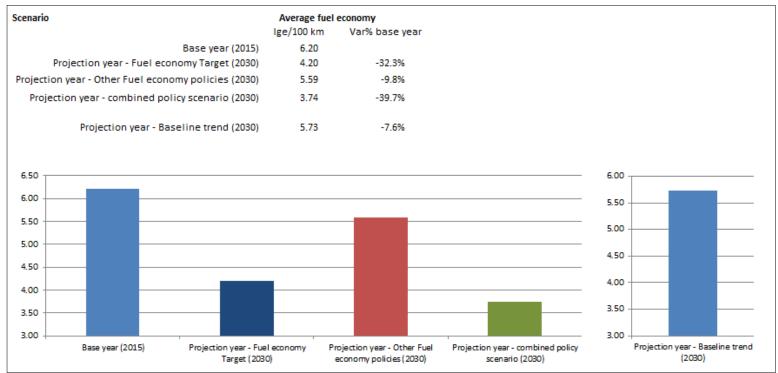
Use of FEPIT

- 1.) Baseline input
- Filling the <u>baseline input</u> fields
- 2.) Projection input and results worksheet:
- Setting the assumptions for the policy scenarios
- Reading the <u>results</u> of the calculations

FEPIT ① Quick user guide	Baseline input		😡 International Ener	gy Agency - powered by TRT
PROJECTION INPUT	RESULTS			
	Projection year is the future horizon year or which the forecasts is requested. hput OK Scenario	Average fuel e		
USER INPUT FOR POLICY SCENARIOS			-32.3%	
Measure 1 Average fuel economy target	Measure activation Projection year - Other F	iel economy policies (2030) 5.59 ined policy scenario (2030) 3.74	-9.8% -39.7%	
Average global improvement rate implemented -2.6%	Select one of the target options. In case the user defined' selection is made, please specify he value of the average global improvement rate e.so	rear - Baseline trend (2030) 5.73	-7.6%	ē.00
	yearly % average improvement rate 3.00			5.00 4.50
	Fuel economy evolution compared to GFEI target 4.30 GFEI/IEA, 2014). 5.30 The table reports the latest global fuel economy rends, for DECD and non-DECD countries, in comparison with the GFEI target at 2030. 5.30		vyur-OtherAuel Projection yur-combined policy yeolocia (2000) accmario (2000)	4.00 5.00 Projection year - Baseline trand (2000)

Example of FEPIT input: Vehicle sales by FE segment

NEW CARS REGISTRATIONS		
New registrations classes		
Fuel consumption thresholds ICE < ICE 4- ICE 5- ICE 6- ICE >	5.0 6.0 7.0	These values define the segments used by the tool to represent the registration mix of conventional Internal Combustion Engine cars. CO2 based vehicle taxation policies are described in the tool by applying taxes differentiated according to these segments. See the user guide for more details on the choice of the thresholds
New registrations composition	·	
<u>Composition for Base year (2015)</u> Battery electric Hybrid Plug-in electric Hybrid electric ICE <4 Ige/100km ICE 4-5 Ige/100km ICE 5-6 Ige/100km ICE 5-7 Ige/100km ICE >7 Ige/100km	0.0% 0.0% 0.3% 0.5% 9.0% 44.4% 28.8% 17.1%	The composition of new registrations is defined in terms of share of cars registered in each segment (according to the classes defined above). Hybrid (electric and plug-in) and battery electric cars are kept separeted. The sum of the shares has to be 100%.
	Input check:	Input OK


Example of FEPIT input: vehicle registration tax scheme

VEHICLE TAXATION		
Automa BECKETRATION and to the horses		
Average REGISTRATION tax in the base year		
Tax level by segment for Base year (2015)	(\$)	The <u>REGISTRATION tax</u> is a tax paid only once when the vehicle is purchased and
Battery electric	0.00	registered. It does NOT include any VAT or similar tax applied to the purchase price
Hybrid Plug-in electric	0.00	
Hybrid electric	0.00	The tax/rebate level has to be defined according to the registration classes
ICE <4 Ige/100km	150.00	defined above.
ICE 4-5 Ige/100km	500.00	Taxes should be coded as positive values, rebates should be coded as negative values.
ICE 5-6 Ige/100km	1000.00	The values of the registration tax should be provided in US Dollars
ICE 6-7 Ige/100km	2000.00	If registration tax does not exist in the base year all values should be set to zero
ICE >7 Ige/100km	3000.00	
	Input check:	Input OK
	-	

FEPIT results

- FEPIT can be downloaded for free from: <u>http://www.iea.org/gfei/FEPIT2015.xlsb</u>
- User guide and methodology report: <u>http://www.iea.org/gfei/FEPITUserGuide.pdf</u> <u>http://www.iea.org/gfei/FEPITMethodologyReport.pdf</u>

Thanks!